Hi, I am facing the same issue and I am not using any optimizer. I was using an optimizer for training but even disabled that but again facing the same issue. Can anyone please help ?
def train(params_file="./keras_to_loihi_params", epochs=1, **kwargs):
converter = nengo_dl.Converter(model, **kwargs)
with nengo_dl.Simulator(converter.net, seed=0, minibatch_size=8) as sim:
sim.compile(
# optimizer=tf.optimizers.RMSprop(0.001),
loss={
converter.outputs[dense3]: tf.losses.SparseCategoricalCrossentropy(
from_logits=True
)
},
metrics={converter.outputs[dense3]: tf.metrics.sparse_categorical_accuracy},
)
sim.fit(
{converter.inputs[inp]: train_imgs},
{converter.outputs[dense3]: train_labels_2},
epochs=epochs,
)
# save the parameters to file
sim.save_params(params_file)