Including equations with TeX formatting is now supported on this forum. Details below, copied from math.stackexchange.com.
-
To see how any formula was written in any question or answer, including this one, right-click on the expression it and choose “Show Math As > TeX Commands”. (When you do this, the ‘$’ will not display. Make sure you add these. See the next point.)
-
For inline formulas, enclose the formula in
$...$
. For displayed formulas, use$$...$$
.
These render differently. For example, type
$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$
to show \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} (which is inline mode) or type$$ \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} $$
to show
\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}(which is display mode).
-
For Greek letters, use
\alpha
,\beta
, …,\omega
: \alpha, \beta, … \omega. For uppercase, use\Gamma
,\Delta
, …,\Omega
: \Gamma, \Delta, …, \Omega. -
For superscripts and subscripts, use
^
and_
. For example,x_i^2
: x_i^2,\log_2 x
: \log_2 x. -
Groups. Superscripts, subscripts, and other operations apply only to the next “group”. A “group” is either a single symbol, or any formula surrounded by curly braces
{
…}
. If you do10^10
, you will get a surprise: 10^10. But10^{10}
gives what you probably wanted: 10^{10}. Use curly braces to delimit a formula to which a superscript or subscript applies:x^5^6
is an error;{x^y}^z
is {x^y}^z, andx^{y^z}
is x^{y^z}. Observe the difference betweenx_i^2
x_i^2 andx_{i^2}
x_{i^2}. -
Parentheses Ordinary symbols
()[]
make parentheses and brackets (2+3)[4+4]. Use\{
and\}
for curly braces \{\}.These do not scale with the formula in between, so if you write
(\frac{\sqrt x}{y^3})
the parentheses will be too small: (\frac{\sqrt x}{y^3}). Using\left(
…\right)
will make the sizes adjust automatically to the formula they enclose:\left(\frac{\sqrt x}{y^3}\right)
is \left(\frac{\sqrt x}{y^3}\right).\left
and\right
apply to all the following sorts of parentheses:(
and)
(x),[
and]
[x],\{
and\}
\{ x \},|
|x|,\vert
\vert x \vert,\Vert
\Vert x \Vert,\langle
and\rangle
\langle x \rangle,\lceil
and\rceil
\lceil x \rceil, and\lfloor
and\rfloor
\lfloor x \rfloor. There are also invisible parentheses, denoted by.
:\left.\frac12\right\rbrace
is \left.\frac12\right\rbrace. -
Sums and integrals
\sum
and\int
; the subscript is the lower limit and the superscript is the upper limit, so for example\sum_1^n
\sum_1^n. Don’t forget{
…}
if the limits are more than a single symbol. For example,\sum_{i=0}^\infty i^2
is \sum_{i=0}^\infty i^2. Similarly,\prod
\prod,\int
\int,\bigcup
\bigcup,\bigcap
\bigcap,\iint
\iint. -
Fractions There are two ways to make these.
\frac ab
applies to the next two groups, and produces \frac ab; for more complicated numerators and denominators use{
…}
:\frac{a+1}{b+1}
is \frac{a+1}{b+1}. If the numerator and denominator are complicated, you may prefer\over
, which splits up the group that it is in:{a+1\over b+1}
is {a+1\over b+1}. -
Fonts
- Use
\mathbb
or\Bbb
for “blackboard bold”: \mathbb{CHNQRZ}. - Use
\mathbf
for boldface: \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathbf{abcdefghijklmnopqrstuvwxyz}. - Use
\mathtt
for “typewriter” font: \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathtt{abcdefghijklmnopqrstuvwxyz}. - Use
\mathrm
for roman font: \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathrm{abcdefghijklmnopqrstuvwxyz}. - Use
\mathsf
for sans-serif font: \mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathsf{abcdefghijklmnopqrstuvwxyz}. - Use
\mathcal
for “calligraphic” letters: \mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ} - Use
\mathscr
for script letters: \mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ} - Use
\mathfrak
for “Fraktur” (old German style) letters: \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathfrak{abcdefghijklmnopqrstuvwxyz}.
-
Radical signs Use
sqrt
, which adjusts to the size of its argument:\sqrt{x^3}
\sqrt{x^3};\sqrt[3]{\frac xy}
\sqrt[3]{\frac xy}. For complicated expressions, consider using{...}^{1/2}
instead. -
Some special functions such as “lim”, “sin”, “max”, “ln”, and so on are normally set in roman font instead of italic font. Use
\lim
,\sin
, etc. to make these:\sin x
\sin x, notsin x
sin x. Use subscripts to attach a notation to\lim
:\lim_{x\to 0}
\lim_{x\to 0} -
There are a very large number of special symbols and notations, too many to list here; see this shorter listing, or this exhaustive listing. Some of the most common include:
-
\lt \gt \le \ge \neq
\lt\, \gt\, \le\, \ge\, \neq. You can use\not
to put a slash through almost anything:\not\lt
\not\lt but it often looks bad. -
\times \div \pm \mp
\times\, \div\, \pm\, \mp.\cdot
is a centered dot: x\cdot y -
\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing
\cup\, \cap\, \setminus\, \subset\, \subseteq \,\subsetneq \,\supset\, \in\, \notin\, \emptyset\, \varnothing -
{n+1 \choose 2k}
or\binom{n+1}{2k}
{n+1 \choose 2k} -
\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto
\to\, \rightarrow\, \leftarrow\, \Rightarrow\, \Leftarrow\, \mapsto -
\land \lor \lnot \forall \exists \top \bot \vdash \vDash
\land\, \lor\, \lnot\, \forall\, \exists\, \top\, \bot\, \vdash\, \vDash -
\star \ast \oplus \circ \bullet
\star\, \ast\, \oplus\, \circ\, \bullet -
\approx \sim \simeq \cong \equiv \prec \lhd
\approx\, \sim \, \simeq\, \cong\, \equiv\, \prec, \lhd. -
\infty \aleph_0
\infty\, \aleph_0\nabla \partial
\nabla\, \partial\Im \Re
\Im\, \Re - For modular equivalence, use
\pmod
like this:a\equiv b\pmod n
a\equiv b\pmod n. -
\ldots
is the dots in a_1, a_2, \ldots ,a_n\cdots
is the dots in a_1+a_2+\cdots+a_n - Some Greek letters have variant forms:
\epsilon \varepsilon
\epsilon\, \varepsilon,\phi \varphi
\phi\, \varphi, and others. Script lowercase l is\ell
\ell. - Detexify lets you draw a symbol on a web page and then lists the \TeX symbols that seem to resemble it. These are not guaranteed to work in MathJax but are a good place to start. To check that a command is supported, note that MathJax.org maintains a list of currently supported \LaTeX commands, and one can also check Dr. Carol JVF Burns’s page of \TeX Commands Available in MathJax.
-
Spaces MathJax usually decides for itself how to space formulas, using a complex set of rules. Putting extra literal spaces into formulas will not change the amount of space MathJax puts in:
a␣b
anda␣␣␣␣b
are both a b. To add more space, use\,
for a thin space a\,b;\;
for a wider space a\;b.\quad
and\qquad
are large spaces: a\quad b, a\qquad b.To set plain text, use
\text{…}
: \{x\in s\mid x\text{ is extra large}\}. You can nest$…$
inside of\text{…}
. -
Accents and diacritical marks Use
\hat
for a single symbol \hat x,\widehat
for a larger formula \widehat{xy}. If you make it too wide, it will look silly. Similarly, there are\bar
\bar x and\overline
\overline{xyz}, and\vec
\vec x and\overrightarrow
\overrightarrow{xy} and\overleftrightarrow
\overleftrightarrow{xy}. For dots, as in \frac d{dx}x\dot x = \dot x^2 + x\ddot x, use\dot
and\ddot
. -
Special characters used for MathJax interpreting can be escaped using the \ character:
\$
\$,\{
\{,\_
\_, etc. If you want \ itself, you should use\backslash
\backslash, because\\
is for a new line.