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offers tools better suited than cotnputationnl theory to understanding t)jologjcal

theory
as fundamentally tetnporal, dynaliiic systcjns operating in changjng. unccrt•mn

For this reason, we adopt theory a of

neurobiological 
systetns.

After a brief introduction to tnodern control theory, we spend the remainder of the

chapter developing successively nujre involved 

the account 

biological 

of representation 

exarnplcs. "Ibcsc 

and 

example« 

trany,formatlon

«how

how control theory is a natural ally of

developed 
so far.

8.1 
CONTROL THEORY AND NEURAL MODELS

8.1.1 
Introduction to control theory

There are two equations that effectively summarize linear control theory:

i(t) Ax(t) + Bu(t) (8.1)

cx(t) + Du(t). (8.2)

These equations constitute what is known as the internal description of a linear system.

Together, they are often called the state equations of a system because the vector x(t)

consists of variables that together describe the (internal) state of the system. It is the

dynamics of these variables that is of the most interest. This is because the state vector,

x(t), serves to summarize the effects of all past input. Thus, all future output depends only

on the current value of the state vector and the future input. In a sense, then, the state vector

is a bridge between the past input and the future output.

The remaining variables in these equations are understood as follows (see figure 8. l):

u(t) is the input or control vector, y(t) is the output vector, A is the dynamics matrix,

B is the input matrix, C is the output or sensor matrix, and D is the feedthrough matrix.

The dimensions of each of the vectors can be different, but these dimensions determine the

corresponding matrix dimensions. Thus, there can be multiple inputs, outputs, and state

variables, whose interactions are determined by the elements of the matrices.

The system depicted in figure 8.1 is called time-invariant because none of the matrices

are functions of time. This means that the parameters controlling the dynamics of the
system are taken not to change over the period of interest. This is often a useful simplifying

assumption, but it is clearly unrealistic in describing neurobiological systems. We discuss
both time-invariant and time-varying systems (see section 8.2). One assumption that we
do not relax is that the systems we are interested in are lumped systems. A lumped system
is One whose state variables are finite. A system whose state has infinitely many variables
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Figure 8.1
A generic block diagram for a time-invariant linear system showing the elements of equations (8.1 ) and (8.2). In
this diagram x(t) is the state vector, u(t) is the input or control vector, y(t) is the output vector, A is the

dynamics matrix, B is the input matrix, C is the output or sensor matrix, and D is the feedthrough matrix.

is called a distributed system. Of course, any distributed system can be arbitrarily well

approximated by a sufficiently large lumped system. The examples we deal with are all

reasonably small lumped systems.

8.1.2 A control theoretic description of neural populations

Given the ubiquity of nonlinear transformations in neurobiological systems, it is far from

clear that such linear analyses will be of use. This, in fact, is not a problem unique

to neurobiological systems. Because there is no general theory for analyzing nonlinear

systems, the study of such systems is generally based on linear systems theory. We

adopt this same strategy. So, while we consider both linear and nonlinear neurobiological

systems, we always base our analyses on linear control theory.

The means by which we integrate control theory and our previous analyses of represen-

tation and transformation is captured by the third principle of neural engineering: neural

dynamics can be characterized by taking neural representations to be control theoretic state

variables. In other words, elements of the state vector, x, (i.e., the state variables) just are

the representations we find in neural populations. And, the relations between these van-

ables (as defined by the system matrices) are the transformations implemented by these

populations. However, we cannot take the control theoretic descriptions of the relations

between variables at face value. Rather, we need to relate the intrinsic dynamics of neural

populations to the standard control theoretic characterization. This allows for a •transla-

tion' between standard control theory and a neurally relevant system description.

In figure 8.1, there are four matrices and a transfer function. In order for this to be a

dynamic system, the transfer function (integration in this figure) needs to be a function
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how we have so far characterized neural function, there are two pos«ibilities

ons in a neural population; that is, there are two parts of the system that

for 
transfer 

functi
dynamic. one is the synaptic filter, 11(/), and the other is the soma voltage,

l'(t). 
Surprisingly, w

of 
cellular 

response as a whole (see appendix F. I

As mentioned earlier, a good approximation to synaptic dynamics is given by (see

section 
4.4.2)

1 (8.3)
Il(t)

where r is the synaptic 

the arrival 

time 

of 

constant. 

a spike and, 

This 

of 

function 

course, it 

describes 

is the linear 

the 

decoder 

postsynaptic 

we discussed

current

(PSC) 
produced by

extensively in chapter 4. So, we need to characterize the dynamics of neural systems with

respect to this decoder.

We can begin by drawing a 'neural' control diagram (see figure 8.2), like that in figure

8.1. This diagram is missing the feedthrough and output matrices from figure 8.1. However,

in the case of a neural system, where each such subsystem describes a single population,

both the feedthrough matrix and the output matrix can be taken to be incorporated into the

input matrix of a subsequent population. Thus, these two matrices need not be explicitly

considered here. Note also that the original integration is replaced by h(s), the Laplace

transform of the synaptic dynamics, h(t), in equation (8.3).

It is very convenient to use the Laplace transform when characterizing dynamics

with differential equations. Essentially, this transform provides a means of writing and

manipulating differential equations algebraically. Much like the Fourier transform, the

independent variable for the Laplace transform, s, can be thought of as frequency. The

following equation defines the Laplace transform:

Here, f(t) is in the time domain and f (s) is in the frequency domain.

Taking the Laplace transform of the time-invariant internal description, equations (8. I )

and (8.2), gives

'2 This is a significant simplification, though a good approximation to true PSCs. In particular, it ignores the
rapid (yet finite) rise in the observed PSC. We have used various forms for this filter in numerical experiments
and have found that including a finite rise time tends to improve the dynamics of the simulation. However, the
Increased complexity of analyzing more faithful models serves to obscure the insights that can be gained by (at
least initially) considering a simpler model. Nevertheless, similar techniques can be employed to analyze other
synaptic models.
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u(t) x(t)
h(s)

Figure 8.2
A generic neural population as a linear system. Note that the feedthrough matrix and output matrix are not

included as part of the figure because both can be incorporated into the input matrix of the SUbsequent

population. A' and B' are the neural dynamics and neural input matrices respectively. The transfer function

h (s), is the Laplace transform of the synaptic dynamics.

sx(s) AX(S) B Il(S) (8.4)

y(s) Cx(s) + Du(s). (8.5)

Given figure 8.2, we can see that equation (8.5) will always be y(s) x(s) for a neural
subsystem, so we focus on equation (8.4). The system described by figure 8.2 can be

written as

x(t) h(t) * [A'x(t) + B'u(t)]

or, in the frequency domain,

x(s) = h(s) [Rx(s) + B'u(s)] .

The Laplace transform, h(s), of h(t) as given by (8.3) is

1
h(s) —I + ST

Therefore,

1
x(s) [Rx(s) + B t u(s)]

1 + ST
—1

[Rx(s) + B'u(s)] .

so,

(r—l + S)X(S) T [A'x(s) + B t u(s)]

sx(s) T [A' — I] X(S) + B u(s).

(8.6)

(8.7)
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Equating the right-hand sides of (8.4) and (8.7) defines the relation between the dynatnics

and input matrices for the standard control systern and the neural control systern. Namely,

TA + I (8.8)

B' (8.9)

where I is the appropriately dimensioned identity matrix.

As simple as these equations are, given a control system in the standard form of figure

8.1, we can use them to 

a detailed 

determine 

example 

the equivalent 

of this in 

neural 

section 

system 

8.2, where 

in the 

we 

standard 

re-examine 

form 

the

of

figure 8.2. We present 

neural integrator previously presented in sections 2.3 and 5.3.

8,1.3 
Revisiting levels of analysis

Before examining specific examples that use this relation, let us consider how the preceding

analysis can help articulate the theory as it has been presented so far. Recall that in chapter

we introduced the distinction between basic representations (i.e., neural activities) and
2 

higher-level representations (i.e., encoded physical properties). In this section we examine

how higher-level and basic representations can be related using the control theoretic

approach just discussed. As well, we show how to move easily between descriptions

employing these different levels of representation. As a result, we characterize a generic

neural subsystem that can be combined to construct large, complex models with various

degrees of neural realism (possibly within the same model).

To understand the subsequent discussion, a few comments on notation are in order.

First, we adopt the conventions from linear control theory that, in systems diagrams: l)

boxes denote transfer functions (which define the dynamics of the system); 2) circles

denote matrices that multiply their inputs; and 3) intersecting lines indicate addition. We

also introduce a convention to use a rightward pointing triangle to indicate a function of

the input that may be nonlinear. As well, we use Greek superscripts to index populations,

and Roman subscripts to index neurons within a population.

Based on the discussion in the previous section, we can draw a standard subsystem

at the basic level (see figure 8.3). Here we have a system that is consistent with typical

neuroscientific descriptions of neuron function. Spike trains, (t ), from various

preceding populations, (3, arrive at the synaptic cleft and, by the action of neurotransmitters,

induce a current change, h(t), in the postsynaptic dendrites of neurons in population ct.

These resulting postsynaptic currents (PSCs) are filtered versions of the presynaptic spike

train, where the filter is well-approximated by 1/1 + ST}/. Either at the tune of filtering

or due to various dendritic processes, these PSCs can have varying degrees of effect on the

changes in the somatic current, JA (t). The synaptic weights, , model this eiTect. There


