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There are tWO equations tha y ear control theory

X(t) = AX(f) - Bu(t) (8 1)

y(t) = Cx(t)+ Du(?). (8.2)

These equations constitute what is known as the internal description of a linear system.

: Together, they are often called the state equations of a system because the vector x(f)
consists of variables that together describe the (internal) state of the system. It is the
dynamics of these variables that is of the most interest. This is because the state vector,
x(t), serves to summarize the effects of all past input. Thus, all future output depends only
on the current value of the state vector and the future input. In a sense, then, the state vector
is a bridge between the past input and the future output.

The remaining variables in these equations are understood as follows (see figure 8.1):
u(t) is the input or control vector, y(t) is the output vector, A is the dynamics matrix,
B is the input matrix, C is the output or sensor matrix, and D is the feedthrough matrix.
The dimensions of each of the vectors can be different, but these dimensions determine the
corresponding matrix dimensions. Thus, there can be multiple inputs, outputs, and state
variables, whose interactions are determined by the elements of the matrices.

The system depicted in figure 8.1 is called time-invariant because none of the matrices
are functions of time. This means that the parameters controlling the dynamics of the
System are taken not to change over the period of interest. This is often a useful simplitying
4ssumption, but it is clearly unrealistic in describing neurobiological systems. We discuss
both time-invariant and time-varying systems (see section 8.2). One assumption that we
fi" hotrelax is that the systems we are interested in are lumped systems. A lumped system
" one whose state variables are finite. A system whose state has infinitely many variables

¥



u(r) (|
B

Figure 8.1
A generic block diagram for a time-invariant linear system showing the elements of equations (8.1) 45,4 1«
this diagram x(t) is the state vector, u(t) is the input or control vector, ¥ (1) is the output vector, A is . -
dynamics matrix, B is the input matrix, C is the output or sensor matrix, and D is the feedthrough mays,

is called a distributed system. Of course, any distributed system can be arbitrarily v,
approximated by a sufficiently large lumped system. The examples we deal with are 4
reasonably small lumped systems.

8.1.2 A control theoretic description of neural populations

Given the ubiquity of nonlinear transformations in neurobiological systems, it is far from
clear that such linear analyses will be of use. This, in fact, is not a problem unique
to neurobiological systems. Because there is no general theory for analyzing nonlinear
systems, the study of such systems is generally based on linear systems theory. We
adopt this same strategy. So, while we consider both linear and nonlinear neurobiologica
systems, we always base our analyses on linear control theory.

The means by which we integrate control theory and our previous analyses of represen-
tation and transformation is captured by the third principle of neural engineering: neurd
dynamics can be characterized by taking neural representations to be control theoretic st
variables. In other words, elements of the state vector, x, (i.e., the state variables) justar
the representations we find in neural populations. And, the relations between these vir
ables (as defined by the system matrices) are the transformations implemented by these
populations. However, we cannot take the control theoretic descriptions of the relations
between variables at face value. Rather, we need to relate the intrinsic dynamics of neural
populations to the standard control theoretic characterization. This allows fora ‘ransld
tion" between standard control theory and a neurally relevant system description.

In figure 8.1, there are four matrices and a transfer function. In order for this to be ¥
dynamic system, the transfer function (integration in this figure) needs to be d function
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in show that the synaptic filter generally dominates the d)‘nam;u

whole (see appendix F.1).

me nctio
"mlmnsfcf'“"‘“. iic
8 inhcrcnlly ymTES:
o sur risingly, W€ ¢

. cellular response as a ot
hc ncmi(mcd earlier, 4 good approximation to synaptic dynamics is given by (see
As ! | ‘

1 -t/ T
) = —€ ’ (8.3
h(t) = 7 )
- is the synaptic time constant. This function describes the postsynaptic current
ced by the arrival of a spike and, of course, it is the linear decoder we discussed
n chapter 4. So, we need to characterize the dynamics of neural systems with
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respect 10 this decoder. .
We can begin by drawing a ‘neural’ control diagram (see figure 8.2), like that in figure

8.1.11“5 diagram is missing the feedthrough and output matrices from figure 8.1. However,
in the case of a neural system, where each such subsystem describes a single population,
poth the feedthrough matrix and the output matrix can be taken to be incorporated into the
input matrix of a subsequent population. Thus, these two matrices need not be explicitly
considered here. Note also that the original integration is replaced by h(s), the Laplace
ransform of the synaptic dynamics, h(t), in equation (8.3).

It is very convenient to use the Laplace transform when characterizing dynamics
with differential equations. Essentially, this transform provides a means of writing and
manipulating differential equations algebraically. Much like the Fourier transform, the
independent variable for the Laplace transform, s, can be thought of as frequency. The
following equation defines the Laplace transform:

/00 e S f(t)dt

0

= f(s)

Here, f(t) is in the time domain and f(s) is in the frequency domain.

Taking the Laplace transform of the time-invariant internal description, equations (8.1)
and (8.2), gives

L(f(t))

m:;‘:yz :i::tge';lgmt simplification, though a good approx?malion to true PSCs. In particular, it ignores the
and have found m::_mlﬂle. observe.d PSC. WC have useq various forms for this filter in numerical experiments
et —— including a finite rise }1me tends to improve the dynamics of the simulation. However, the

. ~¢ “omplexity of analyzing more faithful models serves to obscure the insights that can be gained by (at

Synaptj ally) 0‘.Jlmdenng a simpler model. Nevertheless, similar techniques can be employed to analyze other
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Figure 8.2 .

A generic neural population as a linear system. Note that the t'eedlhmugh matrix u.nd Output matrix 4.
included as part of the figure because both can be incorporated into the input matrix of the subseqyep, e
population. A’ and B’ are the newral dynamics and neural input matrices respectively. The transfer
h(s), is the Laplace transform of the synaptic dynamics. 0

sx(s) = Ax(s)+ Bu(s) 84
y(s) = Cx(s)+ Du(s). 85

Given figure 8.2, we can see that equation (8.5) will always be y(s) = x(s) for 4 neuy
subsystem, so we focus on equation (8.4). The system described by figure 8.2 can be
written as

x(t) = h(t) * [A'x(t) + B'u(t)]
or, in the frequency domain,
x(s) = h(s) [A'x(s) + B'u(s)] . (8.6)

The Laplace transform, h(s), of h(t) as given by (8.3) is

)= 1 +157"
Therefore,
x(s) = 1 +lsr [A'x(s) + B'u(s)]
i
= [A'(s) + B'u(s)].

So,

(r7'+s)x(s) = 717 [A'x(s) + B'u(s)]
7 A = I x(s) + 7' B'u(s). (8.7
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he right-hand sides of (8.4) and (8.7) defines the relation between the dynamics
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dinput matrices for the standard control system and the neural control system. Namely,
an
A' — 1A+1 883
B’ = 7B, R.0)
pere 118 the appropriately dimensioned identity matrix.
w

As simple as these equalions. are, given a control system in the standard form of figure
g1, we can use g 0 delt?nmne the equivalent neural system in the standard form of
ﬁ. are 8.2- We presenf a detailed example of this in section 8.2, where we re-examine the
qeural integrator previously presented in sections 2.3 and 5.3.

§.1.3 Revisiting levels of analysis

Before examining specific examples that use this relation, let us consider how the preceding
analysis can help articulate the theory as it has been presented so far. Recall that in chapter
2 we introduced the distinction between basic representations (i.e., neural activities) and
highcr-level representations (i.e., encoded physical properties). In this section we examine
how higher—level and basic representations can be related using the control theoretic
approach just discussed. As well, we show how to move easily between descriptions
employing these different levels of representation. As a result, we characterize a generic
neural subsystem that can be combined to construct large, complex models with various
degrees of neural realism (possibly within the same model).

To understand the subsequent discussion, a few comments on notation are in order.
First, we adopt the conventions from linear control theory that, in systems diagrams: 1)
hoxes denote transfer functions (which define the dynamics of the system); 2) circles
denote matrices that multiply their inputs; and 3) intersecting lines indicate addition. We
also introduce a convention to use a rightward pointing triangle to indicate a function of
the input that may be nonlinear. As well, we use Greek superscripts to index populations,
and Roman subscripts to index neurons within a population.

Based on the discussion in the previous section, we can draw a standard subsystem
at the basic level (see figure 8.3). Here we have a system that is consistent with typical
neuroscientific descriptions of neuron function. Spike trains, | 87 (t —t;,), from various
preceding populations, /3, arrive at the synaptic cleft and, by the action of neurotransmitters,
induce a current change, w?j" h(t), in the postsynaptic dendrites of neurons in population .
These resulting postsynaptic currents (PSCs) are filtered versions of the presynaptic spike
train, where the filter is well-approximated by 1/1 -+ .s'r,"l"'. Either at the time of filtering
or due to various dendritic processes, these PSCs can have varying degrees of effect on the
changes in the somatic current, J(t). The synaptic weights, w; ', model this effect. There
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